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Abstract— We present LidarDM, a novel LiDAR generative
model capable of producing realistic, layout-aware, physically
plausible, and temporally coherent LiDAR videos. LidarDM
stands out with two unprecedented capabilities in LiDAR
generative modeling: (i) LiDAR generation guided by driving
scenarios, offering significant potential for autonomous driving
simulations, and (ii) 4D LiDAR point cloud generation, enabling
the creation of realistic and temporally coherent sequences.
At the heart of our model is a novel integrated 4D world
generation framework. Specifically, we employ latent diffusion
models to generate the 3D scene, combine it with dynamic actors
to form the underlying 4D world, and subsequently produce
realistic sensory observations within this virtual environment.
Our experiments indicate that our approach outperforms com-
peting algorithms in realism, temporal coherency, and layout
consistency. We additionally show that LidarDM can be used
as a generative world model simulator for training and testing
perception models. We release our source code and checkpoints
at https://github.com/vzyrianov/LidarDM

I. INTRODUCTION

Generative models are notable in areas such as image
and video generation [1], [2], [3], [4], 3D generation [5],
[6], [7], compression [8], [9], and editing [10], [11]. More
recently, they have shown great promise in robotics by
generating realistic scenarios and sensory data for training
and validating embodied agents, significantly reducing the
cost of real-world experiments [12], [13], [14], [15], [16],
[17], [18], [19], [20], [21], [22], [23].

While advancements in conditional image and video gen-
eration [24], [25], [26], [27] have been remarkable, the
specific task of generatively creating scenario-specific, real-
istic LiDAR point cloud sequences for autonomous driving
application remains under-explored. Current LiDAR gen-
eration methods fall into two broad categories, each of
which suffers from specific challenges. (i) LiDAR generative
modeling methods [28], [29], [30], [31] are currently limited
to single-frame generation and do not provide the means for
semantic controllability and temporal consistency. (ii) LiDAR
resimulation [32], [33], [34], [13], [35], [36] relies on user-
created or real-world collected assets, this induces a high
cost, restricts diversity, and limits broader applicability.

To address these challenges, we propose LidarDM (Li-
dar Diffusion Model), which creates realistic, layout-aware,
physically plausible, and temporally coherent LiDAR videos.
LidarDM enables two previously unexplored capabilities : (i)
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controllable LiDAR synthesis guided by driving scenarios,
which holds immense potential for simulation in autonomous
driving, and (ii) 4D LiDAR synthesis for generating realistic
and temporally coherent sequences of labeled LiDAR point
clouds. Our key insight lies in first generating and composing
the underlying 4D world and then creating realistic sensory
observations within this virtual environment. We develop a
novel approach for large-scale 3D scene generation based
on the latent diffusion model and integrate existing 3D
object generators for dynamic actors. This method pro-
duces realistic and diverse 3D driving scenes from a coarse
semantic layout, which to our knowledge, is one of the
first of its kind. Finally, we simulate dynamic and realistic
driving scenario, compose the 3D world at each time step,
and perform stochastic raycasting to produce the final 4D
LiDAR sequence. Our generated results are diverse, realistic,
temporally coherent, and align with the layout (Fig. 1).

Our experimental results demonstrate that individual
frames generated by LidarDM exhibit realism and diversity,
with performance on-par with state-of-the-art techniques in
unconditional single-frame LiDAR point cloud generation.
Moreover, we show that LidarDM can produce temporally
coherent LiDAR videos, outperforming a robust stable diffu-
sion baseline. We further demonstrate LidarDM’s conditional
generation by showing that the generated LiDAR matches
well with ground-truth LiDAR on matching map conditions
for both geometry and intensity. Among generative LiDAR
methods, LidarDM is the first to support map-conditioned
generation and the first to support sequence generation.
Lastly, we illustrate that the data generated by LidarDM
exhibit a minimal domain gap when tested with perception
modules trained on real data and can also be used to
augment training data to significantly improve 3D detectors
and planners. This gives premise for using generative LiDAR
models to create realistic and controllable simulations for
training and testing driving models. For detailed applications
of LidarDM, please refer to Sec. II and Fig. 2.

II. RELATED WORKS

1) LiDAR Simulation: Realistic LiDAR sensor simulation
is crucial for robotics and self-driving vehicle training and
testing. Simulators like CARLA [32] and AirSim [37] create
environments with static (buildings, trees, street lights) and
dynamic (cars, bicycles, buses) assets and simulate LiDAR
with raycasting. Such approaches are simple and easy to
integrate, hence are widely used in robot simulation [38],
[39]. However, these methods face limitations in realism
and scalability due to two key issues: (i) the need for 3D
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Fig. 1: LiDAR sequences generated by LidarDM are realistic, layout-conditioned, physically plausible, and temporally
coherent. We show 3 frames of 2 different videos generated from the same layout. In the layout visualization, the red
rectangles are dynamic vehicles, gray rectangles are static vehicles, blue dots are pedestrians, the green dot is the ego
vehicle sensor, and the gray curves are road boundaries and lane markings.).

assets, which are costly and limit variations; (ii) the sim2real
gap for both asset design and physics simulation.

Recent data-driven approaches reconstruct objects and
environments from real-world LiDAR as meshes [13], [40]
or neural fields [41], [36] from which LiDAR are simu-
lated from raycasting or volume rendering. However, these
methods require rendering LiDAR from models constructed
from real-world scenes, which is costly and not scalable.
In contrast, LidarDM creates scenes in a purely generative
manner, eliminating the need for man-made or reconstructed
assets and environments, and can generate point clouds from
environments unseen during training. For example, Champs-
Élysées (in Fig. 2 (a)) was created from a hand-crafted map
layout, which no re-simulation method can achieve.

2) LiDAR Generation: Generative models provide a
promising alternative for creating realistic LiDAR point
clouds without reconstructing real-world environments. Early
LiDAR generation works utilized the range image represen-
tation using GANs [30], VAEs [30], and diffusion models
[28], [42], [43], [44]. Later works used voxel representations
with VQGANs [29]. However, these methods only generate
single frame LiDAR, and do not provide controllable or
video generation. LidarDM addresses these issues by condi-
tionally generating a 4D world and performing physics-based
raycasting. As shown in Fig.2 (b) and (c), LidarDM provides
realistic LiDAR data to traffic simulators thanks to its tem-
poral consistency and can train perception models (Sec.IV-E)
with paired semantic layout and generated LiDAR—benefits
unmatched by other generative methods.

III. LAYOUT-GUIDED LIDAR VIDEO GENERATION

Our goal is to create a realistic, physically plausible, and
temporally consistent LiDAR sequence that enables a free
viewpoint based on a given bird’s eye view semantic layout
in a purely generative manner without relying on any pre-
collected assets like 3D maps. The key to achieving this lies
in first generating and composing the underlying 3D world,
followed by using generative simulation to create realistic
sensory observations. We begin by formulating generation

as a joint 4D scene generation task (Sec. III-A). Next,
we discuss leveraging 3D diffusion models to create static
and dynamic elements, and ensuring faithful interactions
(Sec. III-B). Finally, a sensor generation procedure is ex-
ecuted to produce the final LiDAR video (Sec. III-C). Fig. 3
depicts the overview of our method.

A. Problem Formulation

Formally, given an input layout I ∈ RL×W×M represent-
ing traffic elements from a bird’s eye view where L, W ,
and M are length, width, and map classes (lanes, roads,
crosswalks), respectively, our goal is to generate a LiDAR
point cloud video X = {xt}, with each xt ∈ RN×4 being
a point cloud (3D location and intensity) at frame t with x0

matching the input layout. This conditional generation setting
offers full controllability, and hence lays the foundation for
a practical asset-free simulator. Without a map, our approach
defaults to unconditional generation (i.e., in Sec. IV-C).

1) 4D World Representation: Our key technical innova-
tion to address the challenge lies in jointly modeling the
generation of underlying 4D world together with sensor
generation. We define the world scene representation as W =
{s, {oi}Ni=0}, where s represents a static scene geometry
and o0, ...,oN are dynamic objects. Both are represented
in the form of an occupancy grid. To model dynamics, we
additionally consider the actions of these dynamic objects
in the form of trajectories P = {τ 0, ..., τT }, with τ t =
{ξego, {ξi,t}Ni=0} representing the pose of actor i at time
t as well as egocar pose ξego. The pose for rigid objects
and the egocar lies in the SE(3) space, while for articulated
objects like pedestrians, it is represented as a kinematic
chain. A composed scene represent the states of the world
at t, incorporating the poses of the ego car and dynamic
objects at time t, is denoted by Wt = π(W, τ t), where π is
an operator composing actors to world.

2) 4D World and LiDAR Generation: To ensure realism
and consistency over time and between the world and sensory
readings, we formulate the generation task as a sampling
problem from the joint distribution p(X ,P,W|I). Directly
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(a) Generates lidar of Champs-Élysées (b) Evaluates safety-critical scenarios by extending Waymax (c) Improves perception via pre-training

Fig. 2: Applications of LidarDM: (a) generating layout-conditioned LiDAR (color boxes highlight the lidar-map consistency);
(b) creating sensor data for traffic simulator [45] to enable end-to-end safety-critical scenarios evaluation; (c) generate large
volume Lidar data with known ground truth labels to improve perception models without data capturing and labelling.

modeling and sampling the joint distribution, however, is
challenging as it involves estimating a distribution across
multiple data modalities (e.g., car trajectories, scene layouts,
sensor noise, etc.). To tackle this, we factorize the joint
distribution p(X ,P,W|I) as follows:

p(s|I) ·
∏
i

p(oi|I)︸ ︷︷ ︸
3D scene and object gen

·
∏
t

p(τ t|τ<t,W, I)︸ ︷︷ ︸
trajectory gen

·
∏
t

p(xt|τ t,W)︸ ︷︷ ︸
sensor simulation

.

Next, we will discuss each individual task in detail.

B. Scene, Object and Trajectory Generation

We decompose the world into a static, intensity-infused
background scene that is constant over time and dynamic
foreground objects that move. This decomposition simpli-
fies the challenging 4D world generation into manageable
tasks: creating object geometries and generating dynamic
effects, while ensuring temporal consistency (e.g. constant
cars’ shapes and walls and trees over time) and physical
plausibility (e.g. ensuring correct collision reasoning).

1) Scene Generation: The scene generation step addresses
the problem of sampling the geometry and LiDAR intensity
of a scene from a given input layout I: s ∼ p(s|I). We
parameterize the intensity-infused scene s ∈ R2×L×W×H ,
where each entry sj ∈ R2 encodes the truncated signed
distance to the surface and an intensity value.

Model: We leverage the latent diffusion model [2], [2] to
tackle this challenge of modeling and sampling from p(s|I)
due to its capacity to sample high-quality data while effec-
tively incorporating strong conditional guidance. Specifically,
our model encodes the high-dimensional s into a continuous
latent representation z using an encoder-decoder structure [2]
with a scene encoder Eθ(s) = z and a scene decoder
Dθ(z) = s̃. This encoder-decoder structure efficiently com-
presses the input data into a lower-dimensional latent space,
enabling more effective and efficient sampling. Additionally,
we encode our high-definition map layout I into a latent
space c = Mθ(I), allowing for more compact conditioning.

Sampling: We leverage a probabilistic denoising diffusion
model [2], [46] Fθ(z, c) to perform classifier-free guidance
sampling [47]. Specifically for each diffusion step k, the fol-
lowing Langevin dynamics step is performed to progressively
denoise until a clean sample z0 is acquired:

zk−1 = zk +
λk

2
[(1 + w)Fθ(zk, c)− wFθ(zk)] +

√
λkϵk

Fθ(zk, c) is the score function ∇z log p(z|c) of the condi-
tional distribution at zk and Fθ(zk) = Fθ(zk, c = 0) is the
the score function of the unconditional distribution pθ(z).
w is the CFG guidance scale parameter, λk is an annealed
noise schedule parameter, and ϵk ∼ N (0, I). Finally, a 3D
scene sample s is recovered by decoding the reverse-diffused
sampling latent code s = Eθ(z0).

Training: We train our diffusion-based scene generation
model using a dataset that pairs scene geometry with map
conditioning. Direct access to dense scene geometry is not
available in practice. Instead, we use NKSR [48], a textured
3D reconstruction method, to recover a pseudo-GT from
an input LiDAR sequence. The recovered mesh’s texture
encodes intensity. Ground truth annotations are used to
remove moving dynamic objects, ensuring our reconstruc-
tion contains only the static scene and objects. We then
train the auto-encoders for both scene geometry and map
layout using reconstruction loss and KL divergence loss:
minθ Lrecon + LKL over real-world examples. Our latent
diffusion model is trained using the score matching loss
function: LLDM = E(z,c),ϵ,k

[
∥ϵ− Fθ(zk, k, c)∥22

]
, where zk

is the forward diffused noisy sample at step k .
2) Object Generation: We employ two object generation

frameworks, GET3D [5] and AvatarClip [49], to create dy-
namic traffic participants. For each actor oi in a given layout
I, we sample a random variable z ∼ N and generate the
corresponding actor mesh following oi = G(z), where G(·)
is the generator/decoder of the chosen generative method.
We use GET3D to generate vehicles and then rescale them
to properly fit within a target bounding box of the layout.
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Fig. 3: Overview of the LidarDM: Given the input traffic layout at time t = 0, LidarDM begins by generating actors and
the intensity-infused static scene. We then generate the motion of the actors and the egocar, and compose the underlying
4D world. Finally, a generative- and physics-based simulation is used to create realistic 4D sensor data.

For pedestrian generation, we utilize AvatarClip [49], which
is conditioned on a SMPL [50] pose and shape parameter
p = (θ,β). We use Mixamo [51] to animate the rigged
model, ensuring realistic 4D human walking motion.

Together, the generated static world s and each actor oi

define our 3D world, denoted as W , as depicted in Fig. 3
3) Trajectory Generation: We extend Waymax [45], a

data-driven 2D BEV traffic simulator, to control the behav-
iors of traffic actors in more systematic manners. Given a
scenario from the WOMD Dataset [52], we use Waymax
to replay ego-vehicle’s and agent’s real-world trajectories,
with an additional reactive Intelligent Driver Model [53]
that updates each agent’s acceleration to avoid collisions.
For unconditional generation, we sample trajectories from a
trajectory bank obtained from Waymo Open dataset [54]. We
employ heuristics to ensure physical feasibility (no hovering)
and that no collisions occur (through agent-agent or agent-
scene collisions). Around 12.3% of sampled trajectories are
retained, which is acceptable because resampling is trivial.

This approach renders our world generation to be com-
pletely asset-free, end-to-end generative, and temporally con-
sistent, allowing for a realistic and physics-based simulation
without the need for artist-curated [32] or pre-collected
assets [13], [35] as in previous LiDAR simulation methods.

C. Physics-Informed LiDAR Generation

Given the complete 4D world W and the poses P , our
next step is to generate a realistic LiDAR point cloud
corresponding to these conditions. At a high level, we use
the poses to compose the scene and objects at each timestep,
then perform physics-informed ray casting to obtain purely
physically simulated LiDAR as an intermediate result. We
leverage data-driven conditional sampling to generate the
final point cloud to simulate real-world LiDAR noises.

1) Scene Composition: We use Dual Marching Cube [55]
to obtain the 3D mesh of the static world from the TSDF
channel of the generated s. Then, using our generated actor
trajectories, we transform all 3D agents’ meshes to the world
coordinates and compose it with s using ego poses and all
actors actor poses at time t, τt, producing the full world
geometry at each time t: Wt = π(W, τ t). For vehicles, π
applies a rigid transform. For pedestrians, π applies a rigid
transform and articulates the human body shape to simulate
animated movement with forward kinematics [56].

2) Physics-based Ray Casting: LiDAR sensors acquire a
3D point cloud by shooting beams of light from the sensor
into the scene. Raycasting simulates this process for a single
beam by calculating the {x, y, z} coordinate point where a
beam would intersect with the scene based on a given ego
vehicle position τt, the composed scene Wt, and the beam’s
elevation (θ) and azimuth (ϕ) angles. LiDARs typically have
multiple beams that spin to generate a single 3D point cloud.
Therefore, the process is repeated for each beam based on the
virtual sensor configuration which we match with the real-
world LiDARs based on provided KITTI HDL-64E [57] and
Waymo specifications.

3) Intensity Modeling: For each point xs
it ∈ xt that lies

on the background scene, we query the intensity channel
of the volume s for the intensity of the closest vertex. For
intensity values of dynamic objects, we opt for a physical-
based approach following Lambert’s Cosine Law. Namely,
for each point xo

it ∈ xt that lies on the dynamic object,
intensity(xo

it) = α + β (Iit ·No
t ) where Iit denotes the

vector from the lidar sensor to xo
it, N

o
t denotes the normal

vector of the object at xo
it, and α, β are constants that have

been hand-tuned to match the empirical intensity distribution
of dynamic objects in Waymo Dataset.

4) Stochastic Raydrop: Raycasted LiDAR from the gen-
erated world appears overly clean, without real-world en-
vironmental and sensor noise. Inspired by LiDARSim, we
stochastically simulates “raydrop”, where rays do not return
to the sensor. For each raycast scan at time t, xt, we project it
onto a 2D spherical range image and predict raydrop proba-
bility per pixel on this image using a U-Net architecture [58],
supervised by real-world LiDAR scan raydrop masks. Our
approach, unlike LiDARSim, requires only a range map,
eliminating the need for multiple additional metadata input
channels that are only available in real-world data. We
sample from this mask with a Gumbel sigmoid to produce
the final LiDAR scan xt for each frame, concluding the end-
to-end LiDAR video generation process.

IV. EXPERIMENT

A. Setup

1) Datasets: We evaluate LidarDM on the KITTI-360
[59] and Waymo Open [54] datasets. KITTI-360 contains
nine driving sequences (76,715 samples), where the first
sequence is used as a val sequence (11,518 samples) and the
last eight are used for training (65,197 samples). However,
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Fig. 4: Real KITTI-360 samples vs unconditional samples from the competing methods. LidarDM generates samples that
feature more detailed salient objects (e.g., cars, pedestrians), sharper 3D structures (e.g., walls), and realistic road layouts.

KITTI-360 does not provide detailed BEV HD map informa-
tion limiting its applications in conditional models. Waymo
Open [54] is a dataset containing 1048 sequences with
158,000 training and 29,700 validation frames. The dataset
provides an HD map in a vector format which we rasterize
into a segmentation map and use for training the conditional
model. The dimensions of the map tensor are L×W×M
(length×width×map classes). The map has 5 classes (lane
markings, road lines, edges, crosswalks, driveways).

2) Training Details: We train our models for 48 hours
using four Nvidia A100 40GB GPUs. We use the Adam
optimizer with a learning rate of 1e-4 for the VAE and 1e-5
for the diffusion U-Net, with a cosine decay schedule.

3) Model Details: The latent diffusion is a UNet with 5
ResNet blocks, featuring channels of 128, 128, 256, 512, 512.
The SDF VAE has 4 ResNet blocks with channels of 448,
640, 896, 1280. The Map VAE has ResNet down/upsample
blocks with channels of 64, 64, 128, 256, 512.

B. Baselines

1) Unconditional Generation: LiDARVAE, LiDARGAN,
ProjectedGAN, LiDARGen, and R2DM are baselines that
use range image representation whereas UltraLiDAR uses
BEV voxel space. For fair comparison, we follow UltraLi-
DAR and evaluate MMD and JSD on a histogram of voxel
occupancy instead of voxel density [29].1

2) Temporal Coherency: We are the first to attempt the
task of sequential LiDAR generation and thus no previous
models exist for comparison. Nonetheless, we implement a
sequence diffusion baseline inspired by recent work in video
generation. Concretely, we train a VAE to encode individual
LiDAR frames. This has been shown previously [29] to be
effective. Next, we train a diffusion model to directly denoise
multiple (i.e., 5) LiDAR frames at once.

C. Unconditional Single-Frame Generation

We first validate our model architecture design and show-
case our model’s generative capability by directly comparing
against previous LiDAR generation models in unconditional
generation (without using HD maps) on KITTI-360 [59].
Based on the results in Table I, BEV models (ours or UltraL-
iDAR) perform best compared to range image models. Note
that UltraLiDAR was directly trained on the task of modeling

1LiDM has random yaw rotations in their samples that can cause unfair
comparison (confirmed with authors). We will include once they provide
rotation-free samples

Method Int. Con. Tem. MMDBEV (↓) JSDBEV (↓)

LiDAR VAE [30] ✗ ✗ ✗ 8.53e−4 0.267
LiDAR GAN [30] ✗ ✗ ✗ 8.95e−4 0.243
ProjectedGAN [60] ✗ ✗ ✗ 7.07e−4 0.201
LidarGen [28] ✓ ✗ ✗ 2.95e−4 0.136
UltraLidar [29] ✗ ✗ ✗ 9.67e−5 0.132
R2DM [44] ✓ ✗ ✗ 3.60e−4 0.148

LidarDM (Ours) ✓ ✓ ✓ 1.67e−4 0.119

TABLE I: Qualitative results for unconditional generation on
KITTI-360 dataset. (Int: Intensity, Con: Controllability, Tem:
Temporal Consistency) ( best, second best, third best)

Metrics Sequence Diffusion LidarDM

Total ICP Energy [m] (↓) 3616.58 916.94
Average ICP Energy (↓) 0.078 0.014
Outlier Percentage (↓) 20.56% 7.12%
Chamfer Distance [m] (↓) 0.39 0.17

TABLE II: Temporal consistency. Outlier percentage uses
distance threshold τ = 0.5m.

single LiDAR scans which the benchmark evaluates, which
explains the performance gap compared to ours. We also
show qualitative comparisons against the baselines in Fig. 4.

D. Map-conditioned Multi-Frame Generation

Our model is the first fully generative LiDAR model
that can generate controllable (through map conditioning),
realistic, and temporally coherent synthetic LiDAR scans.
We will then validate these properties in this section.

1) Consistent 4D Generation: One of our key contri-
butions is the temporal consistency of the sequential Li-
DAR generation. To evaluate this, we first use ICP align-
ment to calculate a relative transformation between con-
secutive generated frames. We define an average point-
to-plane energy over a sequence of LiDAR scans as
our quantitative metrics, following this equation: E =
1

T

∑T
t=1 point2plane(xt, xt−1) where point2plane

represents the point-to-plane distance [61], and xt indicates
the LiDAR scan at time t. Intuitively, E is prone to higher
values from dynamic objects, but it is still a valuable metric
to determine if the general scene geometry is preserved over
time. To further evaluate the geometric consistency , we also
measure the outlier point ratio, defined as the percentage of
points with the point2plane distance larger than a certain
threshold τ . Table II shows our quantitative results, where
we beat the baseline in both metrics by a notable margin,
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Fig. 5: Qualitative results of map-conditioned generation.
Accumulated LiDAR shows temporal and layout consistency.
clearly demonstrating LidarDM’s temporal consistency.

2) Layout-aware LiDAR Generation: To ascertain the
layout-awareness of our LidarDM, we use CenterPoint [62]
trained on real-world LiDAR scans to validate whether it can
accurately detect objects from the LidarDM’s LiDAR scan.

Given an input layout I, we generate the corresponding
LiDAR scan, run CenterPoint on it, and evaluate using mean
average precision (mAP) for vehicles. From our experiments,
LidarDM achieves comparable mAP score (56.4%) com-
pared to real LiDAR (59.7%), indicating strong semantic
correlation of LidarDM’s point cloud to ground-truth. We
compute the mAP agreement between our generated LiDAR
scan and raw LiDAR scan to be up to 81.1%, showcasing
a strong agreement between the two and demonstrating our
approach’s map-awareness and realism.

3) Qualitative results: We show qualitative results of
our map-conditioned LiDAR sequence generation in Fig. 5.
Our generated results closely match the map conditioning,
and the accumulated points over 90 frames highlights Li-
darDM’s temporal consistency and map-awareness. The use
of physical-based LiDAR sensor simulation guarantees that
the generated point clouds are properly occluded by obstacles
and appear as a realistic LiDAR sweep pattern.

4) Intensity Evaluation: To assess our intensity realism,
we use Wasserstein distance (WD) to compare the intensity
distribution of our generated point cloud with that of the real-
world point cloud. As a baseline, we adopt the physics-based
intensity model described in Sec. III-C.3. Our experiment
shows that LidarDM’s intensity distribution matches well
with the gt (WD of 0.0197), which significantly outperforms
the physics-based baseline (WD of 0.0813).

E. Augmenting Real Data with LidarDM

LidarDM is the first LiDAR generative model capable
of generating data conditioned on semantic layouts. This
capability offers the potential to augment the training data
for and improve 3D perception and planning models.

Config L2 (m)
@ 1.0s

L2 (m)
@ 2.0s

L2 (m)
@ 3.0s

Collision
Rate (%)

9.2k Real 0.489 1.374 3.279 1.65%
9.2k Real+92k LidarDM 0.490 1.341 3.160 1.12%

TABLE III: Planner data augmentation: LidarDM-
generated data can enhance performance of end-to-end plan-
ner. ( indicates best)

1) Perception Model Sim2Real: We first use LidarDM to
generate around 70k frames of simulation data based on the
layout from Waymo Dataset [54]. After that, we pre-train a
LiDAR-based 3D object detection model, CenterPoint [62]
(with PointPillars [63] as its backbone), on these generated
LiDAR frames, paired with the object labels from the dataset.
We then train the same model on 35k frames of real data,
both with and without the pre-training stage on the simulation
data, to test the benefits of the LidarDM-generated data.
LidarDM-augmented model achieves mAP score of 61.3%,
compared to 58.2% achieved with the real data-only model.
This shows that LidarDM is an effective generative data
augmentation strategy, offering over 3% improvement in
detection accuracy.

2) Planning Model Sim2Real: Inspired by NMP [64], we
developed a learning-based motion planner that takes the
five most recent LiDAR observations (covering 0.5 seconds
of past history) as input and generates 10 frame (with 0.3
second intervals between each) cost map of the car’s motion
plan. We make two changes to the original NMP model: 1)
our planner does not require privileged HD Maps as input,
allowing the experimental results to focus on the quality of
our generated LiDAR, and 2) the planner does not explicitly
incorporate the ego car’s past trajectory [65], [66], [67]. We
employ a soft cross-entropy loss to train the cost map and
sample from a trajectory bank (generated from the Waymo
dataset using K-Means) during inference.

To show LidarDM’s benefit for motion planning, we first
train a model on 92k LidarDM-generated snippets, then fine-
tune it on 9.2k real sequences. Expert driver trajectories
serve as ground truth (GT) with traffic layout conditions
generating LidarDM samples. For comparison, the same
model is trained on only the 9.2k real sequences. Both
models are trained for 30 epochs until convergence.

We report our results in Table III Using generative pre-
training improves the performance of the planner in a low-
data regime. In particular, our collision rate after 3 seconds
has been reduced by 32% (relative). To our knowledge, this is
the first time conditional LiDAR generation has been shown
to improve an end-to-end motion planner.

V. CONCLUSION

We presented LidarDM, a novel layout-conditioned latent
diffusion model for generating realistic LiDAR point clouds.
Our approach frames the problem as a joint 4D world cre-
ation and sensory data generation task and develops a novel
latent diffusion model to create 3D scenes. The resulting
point cloud videos are realistic, coherent, and layout-aware.
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