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Abstract. We present LidarDM, a novel LiDAR generative model ca-
pable of producing realistic, layout-aware, physically plausible, and tem-
porally coherent LiDAR videos. LidarDM stands out with two unprece-
dented capabilities in LiDAR generative modeling: (i) LiDAR generation
guided by driving scenarios, offering significant potential for autonomous
driving simulations, and (ii) 4D LiDAR point cloud generation, enabling
the creation of realistic and temporally coherent sequences. At the heart
of our model is a novel integrated 4D world generation framework. Specif-
ically, we employ latent diffusion models to generate the 3D scene, com-
bine it with dynamic actors to form the underlying 4D world, and sub-
sequently produce realistic sensory observations within this virtual envi-
ronment. Our experiments indicate that our approach outperforms com-
peting algorithms in realism, temporal coherency, and layout consistency.
We additionally show that LidarDM can be used as a generative world
model simulator for training and testing perception models.

Keywords: LiDAR Generation · Scene Generation · Self-driving

1 Introduction

Generative models have become notable in understanding data distributions and
content creation, e.g . in image and video generation [10, 33, 52–55], 3D object
generation [10,19,38,52], compression [5,29,68], and editing [37,47]. Generative
models also show significant promise for simulation [6, 11, 18, 34, 46, 60, 64, 66,
76, 82], capable of creating realistic scenarios and their associated sensory data
for training and evaluating safety-critical embodied agents, such as in robotics
and autonomous vehicles, without the need of expensive manual modeling of the
real world. These capabilities are crucial for applications that rely on extensive
closed-loop training or scenario testing.

While advancements in conditional image and video generation [15,27,35,44]
have been remarkable, the specific task of generatively creating scenario-specific,
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Fig. 1: We present LidarDM, a novel 4D LiDAR generative model. Our generated
LiDAR videos simultaneously enjoy the benefits of being realistic, layout-conditioning,
physically plausible, diverse, and temporally coherent.

realistic LiDAR point cloud sequences for autonomous driving application re-
mains under-explored. Current LiDAR generation methods fall into two broad
categories, each of which suffers from specific challenges:

1. LiDAR generative modeling methods [8, 72, 79, 83] are currently limited to
single-frame generation and do not provide the means for semantic control-
lability and temporal consistency.

2. LiDAR resimulation [14, 17, 46, 65, 67, 74] depends heavily on user-created
or real-world collected assets. This induces a high operational cost, restricts
diversity, and limits broader applicability.

To address these challenges, we propose LidarDM (Lidar Diffusion Model),
which creates realistic, layout-aware, physically plausible, and temporally coherent
LiDAR videos. We explore two novel capabilities that have not been previously
addressed: (i) LiDAR synthesis guided by driving scenarios, which holds im-
mense potential for simulation in autonomous driving, and (ii) 4D LiDAR point
cloud synthesis aimed at producing realistic and temporally coherent sequences
of labeled LiDAR point clouds. Our key insight to achieving these goals lies in
first generating and composing the underlying 4D world and then creating re-
alistic sensory observations within this virtual environment. To achieve this, we
integrate existing 3D object generation approaches to create dynamic actors and
develop a novel approach for large-scale 3D scene generation based on the latent
diffusion model. This method produces realistic and diverse 3D driving scenes
from a coarse semantic layout, which to our knowledge, is one of the first of its
kind. We apply trajectory generation to create dynamic effects while ensuring
authentic interactions among actors and between actors and the scene. Finally,
we compose the 3D world at each time step and perform stochastic raycasting
simulation to produce the final 4D LiDAR sequence. As shown in Fig. 1, our gen-
erated results are diverse, align with the layout conditions, and are both realistic
and temporally coherent.

Our experimental results demonstrate that individual frames generated by
LidarDM exhibit realism and diversity, with performance that is on-par with
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Generated Lidar

Map + Free Labels

(a) Generates lidar of Champs-Élysées (b) Evaluates safety-critical scenarios by extending Waymax (c) Improves perception via pre-training

Fig. 2: Applications of LidarDM: (a) generating LiDAR that aligns well with the map
(color boxes highlight the consistency between the lidar and the map) without 3D cap-
turing or modeling; (b) providing sensor data for an existing traffic simulator (Way-
max [20]), enabling safety-critical scenarios evaluation from pure sensor data; (c) gen-
erate large volume Lidar data with controllable obstacles locations (treated as ground-
truth labels, which are free to obtain) to improve perception models via pre-training
without expensive data capturing and labelling.

state-of-the-art techniques in unconditional single-frame LiDAR point cloud gen-
eration. Moreover, we show that LidarDM can produce LiDAR videos that main-
tain temporal coherency, outperforming a robust stable diffusion sensor genera-
tion baseline. To our knowledge, this is the first LiDAR generative method
with this capability. We further demonstrate LidarDM’s conditional generation
by showing that the generated LiDAR matches well with ground-truth LiDAR
on matching map conditions. Lastly, we illustrate that the data generated by
LidarDM exhibit a minimal domain gap when tested with perception modules
trained on real data and can also be used to augment training data to sig-
nificantly boost the performance of 3D detectors. This gives premise for using
generative LiDAR models to create realistic and controllable simulations for
training and testing driving models (Please refer to Sec. 2 and Fig. 2 for detailed
applications of LidarDM).

2 Related Works

LiDAR Simulation. Realistic LiDAR sensor simulation is crucial for robotics and
self-driving vehicle training and testing. Traditional LiDAR generation methods
use raycasting-based physical approaches. Simulators like CARLA [14] and Air-
Sim [59] create environments with static (buildings, trees, street lights) and dy-
namic objects (cars, bicycles, buses). In these settings, virtual LiDAR sensors are
placed, casting rays to calculate depth through ray-triangle intersections. Such
approaches are simple and easy to integrate, hence are widely used in robot
simulation [4,45]. Asset-based physical simulation methods for LiDAR face limi-
tations in realism and scalability due to three key issues: the need for 3D assets,
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which are costly and limit variations; further, they also face challenges in closing
the sim2real gap for both asset design and physics simulation.

Recent research attempts to address these shortcomings through data-driven
approaches. LiDARSim [46] uses collected LiDAR sequences to reconstruct maps
and dynamic assets. Subsequent works have improved asset reconstruction using
neural fields-based approaches like NeRF [30,67] or neural feature fields [74], and
with automatic alignment [58], or with past LiDAR readings [30]. Additionally,
realistic physics effects such as ray dropping [49] and snow [21] have also been
modeled. However, constructing detailed 3D maps and objects from real-world
sensor data is often costly and not scalable, typically requiring multiple passes
over the same locations.

Our approach, unlike traditional LiDAR simulations, is purely generative,
eliminating the need for man-made or reconstructed assets and allowing for
easy creation of numerous virtual worlds. In Fig. 2 (a), we present a realistic
generated LiDAR point cloud of Champs-Élysées from only a hand-crafted map
layout (without any actual sensor data from France), which no re-simulation
methods can achieve.

LiDAR Generation. Generative models provide a promising alternative for cre-
ating realistic LiDAR point clouds without reconstructing real-world environ-
ments. Early LiDAR generation work exploited the range image representation
for LiDAR generation. The pioneering work by Caccia et al. [8] focused on using
GANs and VAEs for unconditional generation and performing reconstruction
tasks for noisy LiDAR readings. LiDARGen [83] showed that using a score-
based diffusion model provides improved generative capability and can be used
in downstream classifier-guided sampling tasks such as point cloud upsampling.
The range image representation offers the benefit of physically accurate render-
ing at the cost of being ego-centric, rather than scene-centric. Recently, UltraLi-
DAR [72] proposed using a BEV voxel grid representation for LiDAR generation.
Sampling is performed with a VQVAE [50] in a learned discrete latent space,
ensuring a dense latent space. The BEV-centric representation provides the ben-
efit of improved layout coherence and metrics, at the cost of not guaranteeing a
physically accurate LiDAR sample. However, despite significant advancements,
current generative models do not support conditioning on semantic layouts. This
omission makes the generation process less controllable, reducing its practical ap-
plications. Additionally, a model ensuring temporal consistency in LiDAR video
generation remains to be developed.

Unlike previous methods, our model addresses this challenge by (1) gener-
alizing the task of LiDAR generation to geometry generation and data-driven
ray casting in a novel field representation; (2) guiding generation with a BEV
HD Map layout; and (3) allowing complete control over dynamic scene composi-
tion by adding generated 3D models and enabling free movement of the virtual
LiDAR sensor within the frame. Fig. 2 (b) and (c), respectively, show that Li-
darDM’s point cloud can provide realistic LiDAR information to an existing traf-
fic simulator for autonomous driving’s safety-critical case evaluation thanks to
its temporal consistency, and can improve perception accuracy (Sec. 4.5) thanks
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Fig. 3: Overview of the LidarDM: Given the input traffic layout at time t = 0, Li-
darDM begins by generating actors and the static scene. We then generate the mo-
tion of the actors and the egocar, and compose the underlying 4D world. Finally, a
generative- and physics-based simulation is used to create realistic 4D sensor data.

to its full controllability of scenarios, which means ground-truth detection labels
are free to obtain. These two important benefits cannot be achieved with any
other LiDAR generative methods.

Diffusion Models. Our model builds upon the recent advancement in latent dif-
fusion models. Directly applying diffusion models [24,62] on data can be burden-
some on the denoising network due to the issue of data sparsity. Latent diffusion
alleviates this issue by performing the diffusion process on a dense latent space
of an autoencoder. Models such as stable diffusion [54], stable diffusion XL [51],
and MaskGIT [9] have championed latent diffusion as a highly effective technique
for generative modeling.

Sampling: A key challenge in diffusion-based modeling lies in selecting the
sampling procedure. Early methods utilized Langevin dynamics or ancestral sam-
pling. Recent sampling quality and speed improvements have come from deter-
ministic non-Markovian techniques like DDIM [61] and PNDM [40]. Additionally,
the differential equation interpretation of diffusion models has led to the devel-
opment of samplers like Euler [32] and DPM-Solver [43]. We empirically find
Euler works well in practice for our model.

Conditioning: Various strategies have been devised to integrate conditions
into the diffusion model generation process. Classifier-based guidance (or pos-
terior sampling) [47, 62, 83] utilizes the gradient of a classifier to enhance the
model’s score function. Classifier-free guidance [23] offers a method for training
and sampling class-conditioned diffusion models. Controlnet [80] introduces a
technique for adding controllability to a pre-trained diffusion model through a
class-conditioned hypernetwork. Our approach leverages classifier-free guidance.

In diffusion-based video generation [22, 25, 31, 70, 71, 73], maintaining consis-
tency is a central challenge. Various approaches have been proposed, leveraging
motion modeling, interpolation, or batch sampling to enhance consistency. Our
model is the first to focus on LiDAR video generation. Unlike other methods,
our technique capitalizes on LiDAR’s unique attribute of underlying 3D world
alignment, significantly improving temporal consistency.

3 Layout-Guided LiDAR Video Generation

Our goal is to create a realistic, physically plausible, and temporally consis-
tent LiDAR sequence that enables a free viewpoint based on a given bird’s eye
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view semantic layout in a purely generative manner without relying on any pre-
collected assets like 3D maps. To our knowledge, this is the first solution of its
kind, addressing layout-conditioned LiDAR generation and LiDAR video gen-
eration. The key to achieving this lies in first generating and composing the
underlying 3D world, followed by using generative simulation to create realistic
sensory observations. We begin by formulating the generation as a joint 4D scene
generation task (Sec. 3.1). Next, we discuss leveraging 3D diffusion models to
create static and dynamic elements, ensuring their faithful interaction (Sec. 3.2).
Finally, a sensor generation procedure is executed to produce the final LiDAR
video (Sec. 3.3). Fig. 3 depicts the overview of our method.

3.1 Problem Formulation

Formally, given an input layout I ∈ RL×W×M representing traffic elements from
a bird’s eye view (where L, W , and M are length, width, and map classes,
respectively), our goal is to generate a LiDAR point cloud video X = {xt}, with
each xt ∈ RN×3 being a point cloud at frame t with x0 matching the input
layout. This conditional generation setting offers full controllability, and hence
lays the foundation for a practical asset-free simulator. Note that in the absence
of a map, our approach defaults to unconditional generation.

4D World Representation. Our key technical innovation to address the challenge
lies in jointly modeling the generation of underlying 4D world together sensor
generation. We define the world scene representation as W = {s, {oi}Ni=0}, where
s represents a static scene geometry and o0, ...,oN are dynamic objects. Both
are represented in the form of an occupancy grid. To model dynamics, we addi-
tionally consider the actions of these dynamic objects in the form of trajectories
P = {τ 0, ..., τT }, with τ t = {ξego, {ξi,t}Ni=0} representing the pose of actor i at
time t as well as egocar pose ξego. The pose for rigid objects and the egocar lies
in the SE(3) space, while for articulated objects like pedestrians, it is represented
as a kinematic chain. A composed scene represent the states of the world at t,
incorporating the poses of the ego car and dynamic objects at time t, is denoted
by Wt = π(W, τ t), where π is a composition operator applying transformations
to each actor.

4D World and LiDAR Generation. To ensure realism and consistency over time
and between the world and sensory readings, we formulate the generation task
as a sampling problem from the joint distribution p(X ,P,W|I). Directly mod-
eling and sampling the joint distribution, however, is challenging as it involves
estimating a distribution across multiple data modalities (e.g., car trajectories,
scene layouts, sensor noise, etc.). To tackle this, we factorize the joint distribution
p(X ,P,W|I) as follows:

p(s|I) ·
∏
i

p(oi|I)︸ ︷︷ ︸
3D scene and object gen

·
∏
t

p(τ t|τ<t,W, I)︸ ︷︷ ︸
trajectory gen

·
∏
t

p(xt|τ t,W)︸ ︷︷ ︸
sensor simulation

. (1)

Next, we will discuss each individual task in detail.
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Fig. 4: Our 3D scene generation pipeline. First, accumulated point clouds are used to
reconstruct each ground truth mesh sample. Next, a variational autoencoder is trained
to compress meshes into a latent code. Finally, a map-conditioned diffusion model is
trained to perform sampling within the latent space of the VAE, yielding novel samples.

3.2 Scene, Object and Trajectory Generation

We decompose the world into a static background scene, constant over time, and
dynamic foreground objects that move. This decomposition simplifies the chal-
lenging 4D world generation into more manageable tasks: creating object geome-
tries and generating dynamic effects. This modeling approach ensures temporal
consistency (e.g . keeping cars’ shapes constant and walls and trees remain still
over time) and physical plausibility (e.g . ensuring correct occlusion reasoning).

Scene Generation. The scene generation addresses the problem of sampling the
geometry of a scene from a given input layout I: s ∼ p(s|I). We parameterize
the 3D scene using a signed distance field, s ∈ RL×W×H , where each entry sj
encodes the truncated signed distance to the surface, −1 ≤ sj ≤ 1, with negative
values indicating outside the mesh and positive values inside the surface.

Model: We leverage the latent diffusion model [54,54] to tackle this challenge
of modeling and sampling from p(s|I). We choose the latent diffusion model for
its capacity to sample high-quality data while effectively incorporating strong
conditional guidance. Specifically, our model encodes the high-dimensional SDF
volume s into a continuous latent representation z using an encoder-decoder
structure [54] with a scene encoder Eθ(s) = z and a scene decoder Dθ(z) =
s̃. This encoder-decoder structure efficiently compresses the input data into a
lower-dimensional latent space, enabling more effective and efficient sampling.
Additionally, we encode our high-definition map layout I into a latent space
c = Mθ(I), allowing for more compact conditioning.

Sampling: We leverage a probabilistic denoising diffusion model [54,62] Fθ(z, c)
to perform classifier-free guidance sampling [23]. Specifically for each diffusion
step k, the following Langevin dynamics step is performed to progressively de-
noise until a clean sample z0 is acquired:

zk−1 = zk +
λk

2
[(1 + w)Fθ(zk, c)− wFθ(zk)] +

√
λkϵk
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Raydrop Prob Raydrop Mask Final LiDAR GenerationRange imageRaycasting LiDAR Masked Range Masked LiDAR

Fig. 5: Stochastic raydrop networks for sensory noise simulation, further enhancing
realism. We highlighted the raydropped points in red on Masked Range and Masked
LiDAR Images above.

Fθ(zk, c) is the score function ∇z log p(z|c) of the conditional distribution at zk
and Fθ(zk, c = 0) is the the score function of the unconditional distribution
pθ(z). w is the CFG guidance scale parameter, λk is an annealed noise schedule
parameter, and ϵk ∼ N (0, I). Finally, a 3D scene sample s is recovered by
decode the reverse-diffused sampling latent code s = Eθ(z0). Fig. 4(c) depicts
the sampling procedure.

Training: We train our diffusion-based scene generation model using a dataset
that pairs scene geometry with map conditioning. Direct access to dense scene ge-
ometry is not available in practice. Instead, we use the state-of-the-art dense ge-
ometry reconstruction approach, neural kernel surface reconstruction (NKSR) [28],
to recover a pseudo-GT from an input LiDAR sequence. Ground truth an-
notations are used to remove moving dynamic objects, ensuring our recon-
struction contains only the static scene and objects. We then train the auto-
encoders for both scene geometry and map layout using reconstruction loss and
KL divergence loss: minθ Lrecon + LKL over real-world examples (Fig. 4 (a)).
Our latent diffusion model is trained using the score matching loss function:
LLDM = E(z,c),ϵ,k

[
∥ϵ− Fθ(zk, k, c)∥22

]
, where zk is the forward diffused noisy

sample at step k (Fig. 4 (b)).

Object Generation. Inspired by the rapid advancements in 3D shape generation,
we employ two high-fidelity, 3D object generation frameworks, GET3D [19] and
AvatarClip [26], to create dynamic traffic participants.

For each actor oi in a given layout I, we sample a random variable z ∼ N
and generate the corresponding actor mesh following oi = G(z), where G(·) is
the Generator/Decoder of the chosen generative method. For cars, trucks, and
other four-wheeled vehicles, we use GET3D [19], which has demonstrated state-
of-the-art and diverse generative results for 3D shapes, including cars. The layout
box in I is used to rescale the shape of each actor, ensuring that the sizes of
the generated shape and the input layout are consistent. AvatarClip [26] is used
to generate pedestrians conditioned on a SMPL [41] pose and shape parameter
p = (θ,β). Furthermore, each generated rigged model is animated with a walk-
ing animation from Mixamo [3], ensuring a realistic 3D human walking motion
sequence over time.

Together, the generated static world s and each actor oi define our 3D world
scenario, denoted as W. Fig. 3 depicts the composed scene.
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Trajectory Generation. To simulate a dynamic traffic scenario, we propose a
retrieval-augmented generation coupled with a rejective sampling scheme to gen-
erate realistic and physically plausible dynamics for each actor and the ego ve-
hicle, turning our 3D scene representation W to 4D, denoting as Wt for a given
time t.

For the ego vehicle and each actor, jointly denoted as P = {τt}, we sampled
trajectories from a trajectory bank obtained from Waymo Open dataset [63] and
augment them to the scene. This guarantees realistic dynamics as the dataset is
obtained from a diverse set of real-world scenarios. To ensure the physical feasi-
bility of the sampled trajectories with respect to our generated scene, we reject
those that violate rules of physics, such as collision with the static world, collision
between actors, or hovering over the non-mesh area, while making sure to po-
sition them correctly above the ground. Around 12.3% of sampled trajectories
are retained. This rate is acceptable because resampling is trivial.

Additionally, for more realistic trajectory generation targeting for simula-
tion use-cases, we extend Waymax [20], a data-driven 2D BEV traffic simulator,
to control the behaviors of traffic actors in more systematic manners. Given a
scenario from the WOMD Dataset [16], we use Waymax to replay ego-vehicle’s
and agent’s real-world trajectories, with an additional reactive intelligent driving
module [69] that updates each agent’s acceleration to avoid collisions. Since the
trajectories are specific to the given real-world scenario, they are guaranteed to
be physically plausible, but less diverse than our approach above.

Effectively, this approach renders our world generation to be completely
asset-free, end-to-end generative, and thereby temporally consistent, allowing
for a realistic, generative, and physics-based simulation without the need for
artist-curated [14] or pre-collected assets [46, 74] as in previous lidar simulation
method.

3.3 Physics-Informed LiDAR Generation

Given the complete 4D world W and the poses P, our next step is to generate a
realistic LiDAR point cloud corresponding to these conditions. At a high level,
we use the poses to compose the scene and objects at each timestep, then perform
physics-informed ray casting to obtain purely physically simulated LiDAR as an
intermediate result. As a final step, we leverage data-driven conditional sampling
to generate the final LiDAR point cloud to simulate real-world LiDAR noises
from the clean ray casting LiDAR.

Scene Composition. We use the Dual Marching Cube method [57] to obtain the
3D mesh of the static world from the generated TSDF volume s. Then, with
the trajectories of the ego car and all actors at time t, τt, we transform the 3D
mesh to the world coordinates and compose it with s, producing the full world
geometry at each time t: Wt = π(W, τ t) For each vehicle actor, π applies a
rigid body transformation. For pedestrians, besides the rigid body movement, π
additionally articulates the human body shape to simulate the animated nonrigid
human movement with forward kinematics [7].
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Physics-based Ray Casting. From the ego vehicle position τt, we perform ray-
casting by utilizing Open3D [81] to compute ray-triangle intersections against
the composed scene Wt, obtaining the raycast scan xt. To enhance realism of
the raycasting to real-world LiDAR, we closely match the LiDAR sensor config-
uration (elevation angles, azimuth angles, field of view, etc.) with the real-world
Lidar, depending on the use-case. For single-frame generation (Sec. 4.3), we fol-
low the Velodyne HDL-64E manual [1] to match with KITTI-360 dataset [39].
For conditional multi-frame generation (Sec. 4.4), we use the calibration infor-
mation provided with Waymo Open Dataset [63].

Stochastic Raydrop. Raycasted LiDAR from the generated world appears over-
clean without real-world noises due to environmental and sensor noise factors. To
address this, inspired by LiDARSim, we have an additional stage that stochas-
tically simulates “raydrop”, where rays do not return to the sensor. For each
raycast scan at time t, xt, we project it onto a 2D spherical range image using
polar coordinates. This image uses azimuth and zenith angles to represent coor-
dinates and encodes depth values for each pixel. We predict raydrop probability
per pixel on this image using a U-Net architecture [48] supervised by real-world
LiDAR scan raydrop masks. Our approach, unlike LiDARSim, requires only a
range map, eliminating the need for multiple additional metadata input channels
that are only available in real-world data. We also apply a Gumbel sigmoid for
random sampling. The application of our stochastic raydrop method produces
the final LiDAR scan xt for each frame, concluding in our complete end-to-end
LiDAR video generation process, as shown in Fig. 5.

4 Experiment

4.1 Setup

Datasets. We evaluate our proposed LidarDM on KITTI-360 [39] and Waymo
Open [63] datasets. KITTI-360 is the de facto dataset for evaluating uncondi-
tional LiDAR generation methods. The dataset contains nine driving sequences
(76,715 samples), where the first sequence is used as a val sequence (11,518 sam-
ples) and the last eight are used for training (65,197 samples). The sequences
were collected across Karlsruhe, Germany with a 64 Beam LiDAR. However,
KITTI-360 does not provide detailed BEV HD map information limiting its ap-
plications in conditional models. Waymo Open [63] is a dataset containing 1048
sequences with 158,000 training and 29,700 validation frames. A detailed HD
map allows us to train conditional diffusion models. The HD map is in a vector
format storing edges of map objects. We preprocess the map by centering it
on each LiDAR Frame and rasterizing it into a segmentation map. The dimen-
sions of the map tensor are L×W×M (length×width×map classes). The map has
5 classes (lane markings, road lines, edges, crosswalks, driveways).

Training Details. We train our models using four Nvidia A100 40GB GPUs. We
use the AdaM optimizer with a learning rate of 1e-4 for the VAE and 1e-5 for
the diffusion U-Net, with a cosine decay schedule.
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Real ProjectedGAN LiDARGen UltraLiDAR Ours

Fig. 6: Real KITTI-360 samples vs unconditional samples from the competing meth-
ods. UltraLiDAR sample visualizations are directly acquired from their paper. Com-
pared to previous approaches, LidarDM generates samples that feature a greater quan-
tity of more detailed salient objects (e.g., cars, pedestrians), sharper 3D structures
(e.g., straight walls), and more realistic road layouts.

Model Details. The diffusion UNet, which is conditioned on layout and SDF
latents, has 5 ResNet blocks with 2× downsampling with channels of
{128,128,256,512,512}. The SDF VAE has 4 ResNet blocks with channels of
{448,640,896,1280}. The Map VAE has ResNet down/upsample blocks with
channels of {64,64,128,256,512}, and it is trained independently with X-Entropy
and KL regularization.

4.2 Baselines

Unconditional Generation. LiDARVAE, LiDARGAN, ProjectedGAN, and Li-
DARGen are baselines that perform generation in the range image representa-
tion. UltraLiDAR performs generation in the BEV voxel space. To provide a fair
comparison, we follow UltraLiDAR and evaluate MMD and JSD on a histogram
of voxel occupancy instead of voxel density [72]. In addition, UltraLiDAR does
not provide samples so we use their reported numbers in their original paper.

Temporal Coherency. We are the first to attempt the task of sequential LiDAR
generation and thus no previous models exist for comparison. Nonetheless, we
implement a sequence diffusion baseline inspired by recent work in video gener-
ation. We believe this approach is the most straightforward initial approach.

Concretely, we train a VAE to encode individual LiDAR frames. This has
been shown previously [72] to be powerful and effective. Next, we train a diffusion
model to directly denoise multiple (i.e., 5) LiDAR frames at once. Visually, this
approach yields decent temporal consistency.
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Method MMDBEV (↓) JSDBEV (↓)

LiDAR VAE [8] 8.53× 10−4 0.267
LiDAR GAN [8] 8.95× 10−4 0.243
ProjectedGAN [56] 7.07× 10−4 0.201
LidarGen [83] 2.95× 10−4 0.136
UltraLidar [72] 9.67× 10−5 0.132
LidarDM (Ours) 1.67× 10−4 0.119

Table 1: Qualitative results for unconditional generation on KITTI-360 dataset. (
best, second best, third best)

Method Total ICP
Energy [m] (↓)

Average
ICP Energy (↓)

Outlier
Percentage (↓)

Chamfer
Distance [m] (↓)

Sequence Diffusion 3616.58 0.078 20.56% 0.39
LidarDM (Ours) 916.94 0.014 7.12% 0.17

Table 2: Temporal consistency. Outlier percentage uses distance threshold τ = 0.5m.

4.3 Unconditional Single-Frame Generation

We first validate our model architecture design and showcase our model’s genera-
tive capability by directly comparing against previous LiDAR generation models
in unconditional generation on KITTI-360 [39].

Based on the results in Table 1, BEV models (such as ours or UltraLiDAR)
perform best in top-down layout quality (as reflected by MMD and JSD) com-
pared to range image models. The close performance gap compared to Ultra-
LiDAR can be explained by the fact that UltraLiDAR was directly trained on
the task of modeling single LiDAR scans which the benchmark evaluates. In
addition, the BEV voxel grid representation offers large flexibility in generating
physically implausible LiDAR readings that have the potential accurately match
ground truth data in histogram metrics. We also show qualitative comparisons
against the baselines in Fig. 6.

4.4 Map-conditioned Multi-Frame Generation

Our model is the first fully generative LiDAR model that can generate control-
lable (through map conditioning), realistic, and temporally coherent synthetic
LiDAR scans. We will then validate these properties in this section.

Consistent Video Generation One of our key contributions is the tempo-
ral consistency of the sequential LiDAR generation. To evaluate this, we first
use ICP alignment to calculate a relative transformation between consecutive
generated frames. We then exploit LiDAR’s 3D nature and define an aver-
age point-to-plane energy over a sequence of LiDAR scans as our quantita-

tive metrics, following this equation: E =
1

T

∑T
t=1 point2plane(xt, xt−1) where

point2plane represents the point-to-plane distance [42], and xt indicates the
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Fig. 7: Qualitative results of map-conditioned sequence generation on 2 Waymax [20]
map sequences. We also showcase the corresponding accumulated point cloud to high-
tlight the temporal consistency of LidarDM.

LiDAR scan at time t. Intuitively, E is prone to higher values from dynamic
objects, but it is still a valuable metrics to determine if the general geometry of
the 3D scene is preserved over time as the majority of the environment is static.
To further evaluate the geometric consistency of the generative LiDAR sequence,
we also measure the outlier point ratio, defined as the percentage of points
with the point2plane distance larger than a certain threshold τ . Table 2 shows
our quantitative results, where we beat the baseline in both metrics by a notable
margin. These results clearly show that our LidarDM is capable of generating
temporally-consistent LiDAR sequences.

mAP (%) mAP Agreement

Real 59.7
81.1%

LidarDM 56.4

Table 3: Real2Sim: Detector [75]
trained on real data can be evaluated on
LidarDM-generated data, showing strong
agreement with its real counterpart, sug-
gesting its potential for simulation.

Config mAP (%)

35k Real 58.2

35k Real + 70k LidarDM 61.3

Table 4: Data augmentation:
LidarDM-generated data can enhance
training for detectors on real-world data,
suggesting its potential to improve the
perception module without expensive
data annotation.

Layout-aware LiDAR Generation To ascertain the layout-awareness of our
LidarDM, we use CenterPoint [75] trained on real-world LiDAR scans to validate
whether it can accurately detect objects from the LidarDM’s LiDAR scan. As
LidarDM currently does not generate intensity, we trained CenterPoint excluding
intensity of the real-world LiDAR scans, hence the potential mismatch between
our results and those obtained in the original paper [75].

Given an input layout I, we generate the corresponding LiDAR scan, run
CenterPoint on it, and evaluate using mean average precision (mAP) for vehicles.
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We compare this result with the mAP from the raw LiDAR. The result in Table
3 indicates that CenterPoint’s object detection on our generated LiDAR scan is
comparable to the ground truth. We also compute the mAP agreement between
our generated LiDAR scan and raw LiDAR scan, indicating a strong agreement
between the two and demonstrating our approach’s map-awareness and realism.

Qualitative results We show qualitative results of our map-conditioned Li-
DAR sequence generation in Fig. 7. Our generated results closely match the
map conditioning by adding flat surfaces and static vehicles that correspond to
the provided layout. The use of physical-based LiDAR sensor simulation guar-
antees that the generated point clouds are properly occluded by obstacles and
appear as a realistic LiDAR sweep pattern. We also showcase the accumulated
LiDAR points over 90 frames in Waymax [20], highlighting LidarDM’s temporal
consistency and map-awareness.

4.5 Augmenting Real Data with LidarDM

LidarDM is the first LiDAR generative model capable of generating data condi-
tioned on a given semantic layout. This capability offers the potential to augment
the training data for 3D perception models, thereby further boosting their perfor-
mance. To evaluate this capability, we first use LidarDM to generate around 70k
frames of simulation data based on the layout from Waymo Dataset [63]. After
that, we pre-train a LiDAR-based 3D object detection model, CenterPoint [75]
(with PointPillars [36] as its backbone), on these generated LiDAR frames, paired
with the object labels from the dataset. We then train the same model on 35k
frames of real data, both with and without the pre-training stage on the sim-
ulation data, to test the benefits of the LidarDM-generated data. According to
Table 4, LidarDM can act as an effective generative data augmentation strategy,
offering more than a 3% improvement in detection accuracy.

5 Conclusion

In this paper, we introduced LidarDM, a novel layout-conditioned latent diffusion
model for generating realistic LiDAR point clouds. Our approach frames the
problem as a joint 4D world creation and sensory data generation task and
develops a novel latent diffusion model to create 3D scenes. The resulting point
cloud videos are realistic, coherent, and layout-aware.

Limitations So far, LidarDM relies on latent diffusion models, which are not
real-time. Recent progress in latent consistency models promises to accelerate
the generation process. We also leave LiDAR intensity modeling as future work.
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LidarDM: Generative LiDAR Simulation in a
Generated World – Supplementary Materials

Abstract. In the following supplementary material, we provide addi-
tional model details and ablations (Sec. 1). In Sec. 2 we provide ad-
ditional qualitative LidarDM results, including a baseline comparison, a
close look at pedestrian details, and visualizations of map condition align-
ment. In Sec. 3, we provide additional downstream applications such as
crafting safety-critical and out-of-distribution scenarios for self driving.
In Sec. 3.3, we perform a Sim2Real data augmentation experiment on an
end-to-end LiDAR-based planner.

1 Experimental Details

1.1 Sequence Diffusion Baseline.

The sequential diffusion baseline follows a latent diffusion architecture similar
to that of LidarDM. However, it uniquely adopts a BEV LiDAR representation,
encoding the observed voxelized point cloud, in line with advanced LiDAR gen-
eration methods. This approach specifically employs a binary occupancy grid
centered around the ego sensor [72]. The training process is conducted in two
stages. Initially, a VAE is trained using cross-entropy for reconstruction loss on
this data, supplemented by KL divergence regularization. In practice, we found
Ultralidar’s discrete code does not perform as well as continuous latent space.
Following this, a diffusion model is trained in the latent code space. This model
is conditional and its training mirrors that of LidarDM; it utilizes the same map
latent code, which is occasionally omitted during training (20% of the time) [23].
For consistent generation, the model simultaneously denoises five latent codes,
each corresponding to a LiDAR frame, through a latent code-concatenation tech-
nique. This baseline is developed on four Nvidia A100 40GB GPUs. The AdaM
optimizer is used, with a learning rate of 1e-4 for the VAE and 1e-5 for the
diffusion U-Net, following a cosine decay schedule.

This setup allows for an effective comparison between the baseline and our
approach, demonstrating the efficacy of the core idea of jointly generating a 4D
world during sensor generation.

1.2 Raydrop Ablation

We perform an ablation study on various ray-dropping options in Table 1. The
table suggests that Gumbel Softmax generally yields better-calibrated LiDAR
ray drops than Softmax (the one used in Lidarsim), with lower JSD and MMD.
Additionally, although not using ray dropping yields a decent MMD score, it



2

significantly increases the number of points (doubling the ground truth number
of points), making it unrealistic. For a fair comparison, all configurations are
evaluated on the same subset of underlying validation 3D worlds (hence the
numbers might slightly differ from our reported test numbers).

Config MMDBEV (↓) JSDBEV (↓)

No Raydrop 1.730× 10−4 0.1286
Softmax 1.990× 10−4 0.1274
Gumbel (Ours) 1.846× 10−4 0.1271

Table 1: Raydrop Ablation. ( best, second best, third best)

2 LidarDM Additional Results

2.1 Sequential Diffusion Comparison.

We compare the layout-conditioned LiDAR video generation results of our method
with the strong sequential diffusion baseline, as described in Section 4.2 of the
main paper. Fig. 1 displays these results. From these, it is evident that our
approach significantly outperforms the baseline in terms of realism and layout-
awareness. Specifically, we would like the readers to pay attention to the dynamic
object’s shape, the layout of walls and other static infrastructures, and missing
objects in the baseline.

2.2 Pedestrian Motion.

Thanks to actor insertion, we can accurately model fine details such as walking
pedestrians compared to other pure generative results. Fig. 3 visualizes such
case, offering a view in both how the underlying pedestrian meshes behave, as
well as how the corresponding LiDAR points are affected.

2.3 More Map-aligned Qualitative Results.

Fig. 2 presents more map-aligned visualization as well as accumulated point
cloud, ensuring the map-awareness and temporal consistency of our approach.
We encourage the readers to watch our supplementary videos for better visual-
ization of qualitative results. Note: the black lines on the map indicates the road
edge (which corresponds to a "bump" in LiDAR data as indicated in the color
boxes), not structures (buildings, walls). Thus, our LiDAR points end outside of
those black edges (which corresponds to structures, such as buildings). This is
consistent with the real-world LiDAR.
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3 LidarDM Downstream Tasks Results

3.1 Safety-Critical Scenarios

We argue that one of the many benefits of LidarDM is the ability to extend
existing traffic simulators with realistic and scenario-aware LiDAR data, allow-
ing for sensor-based critical safety scenario evaluation of autonomous system.
More specifically, we extend Waymax [20], a BEV traffic simulator, and show-
case how LidarDM can create realistic LiDAR for two types of safety-critical
scenarios, ego-vehicle behavior manipulation (Fig. 4) and actors behavior ma-
nipulation (Fig. 5).

3.2 Out of Distribution Object Insertion

We demonstrate the strong controllability and flexible nature of our generative
approach by replicating dangerous scenarios in simulation. Similar to our ap-
proach on vehicle or pedestrian actors (Sec. 3.2), we obtain the out-of-distribution
meshes from generative models (or even off-the-shelf assets on Sketchfab [2]). For
trajectories, we find it sufficient to sample from vehicles’ trajectories from the
trajectory bank, or simply pre-define a series of road-crossing trajectories. In
Fig. 6, we show an example of inserting dangerous animals into the scene. These
scenarios are not present in the Waymo dataset [63], but may occur in real life
due to escaped zoo animals or on roads that are near wildlife habitats.

3.3 LidarDM as Data Augmentation for Planning

Inspired by our perception data augmentation experiment, we performed a sec-
ond Sim2Real experiment to demonstrate that LidarDM-generated data can
aid in training a learning-based end-to-end motion planner. Model and infer-
ence: Drawing inspiration from the Neural Motion Planner [77], we developed
a learning-based motion planner that takes the five most recent LiDAR obser-
vations (covering 0.5 seconds of past history) as input and generates a dense
cost map of size W × H × T for the future, where T represents the number
of future timestamps. In this case, T = 10, with a 0.3-second interval between
consecutive frames. During inference, we sample trajectories from a trajectory
bank and select the one with the lowest overall cost as the final planned tra-
jectory. Training: During training, we employ a soft cross-entropy loss to train
the cost map and generate a trajectory bank from the Waymo dataset using K-
Means. Training and validation is done following the standard splits on Waymo
Open dataset. Remark: We want to highlight two key differences compared to
the vanilla NMP model: 1) our motion planner does not require privileged HD
Maps as input, and 2) the motion planner does not explicitly incorporate the
ego car’s past trajectory. The first design choice ensures that the model focuses
on leveraging sensor data; hence, the comparison concentrates on evaluating the
quality of our generated LiDAR point clouds. The second choice is inspired by
recommended practices and findings from recent studies [12, 13, 78], suggesting
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that incorporating ego vehicle’s past states results in short-cut effects and biases
imitation learning for end-to-end driving.

Experimental details: In order to show that LidarDM-generated data can
help augment the motion planner, we first train a model on 92k snippets of
LidarDM-generated sequences, then fine-tune it on 9.2k real data sequences.
Note that we use trajectories of expert drivers as GT and use traffic layout
conditions to generate our LidarDM samples. As a comparison, we also train the
same planner model using only the 9.2k real data sequences. To ensure fairness,
we train both the real-only model and the real+sim model for a total of 30 epochs
until convergence and choose the best model based on minimal validation loss.

Experimental results: We report two metrics: 1) the collision rate at a
3-second future, which measures the safety and traffic awareness of the planner;
and 2) the L2 distance at 1 second, 2 seconds, and 3 seconds, which measures
the accuracy for imitation. We present our results in Table 2. Using generative
pre-training improves the performance of the planner in a low-data regime. In
particular, our collision rate after 3 seconds has been reduced by 32% (relative)
from 1.65% to 1.12%. To our knowledge, this is the first time conditional LiDAR
generation has been shown to improve an end-to-end motion planner.

Config L2 (m)
@ 1.0s

L2 (m)
@ 2.0s

L2 (m)
@ 3.0s Collision Rate (%)

9.2k Real 0.489 1.374 3.279 1.65%
9.2k Real + 92k LidarDM 0.490 1.341 3.160 1.12%

Table 2: Planner data augmentation: LidarDM-generated data can enhance the
training of a Neural Motion Planner [77]-inspired model on real-world data, suggesting
its potential to improve the planning module without expensive data collection.(
best, second best)
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Bird-Eye View Side View
Map Seq Diffusion LidarDM (Ours) Seq Diffusion LidarDM (Ours)

Fig. 1: Comparison of Layout-Conditioned LiDAR Generation on Waymo dataset: Our
approach significantly outperforms the strong latent-diffusion-based sequential gener-
ation baseline in terms of realism, physics plausibility, and coherence with the input
layout.
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t=0 t=30 t=60 t=90 Accumulated

Fig. 2: More Map-Aligned Qualitative Results. We showcase 4 different frames of the
same sequence, with both map-aligned and LiDAR top-down view. We also show the
accumulated point clouds, colored by their time index to showcase the temporal con-
sistency.
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Fig. 3: Pedestrian motion captured with LidarDM: Thanks to our actor insertion ap-
proach, we can capture high-fidelity pedestrian movement through LiDAR, which none
other generative method can achieve.
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Fig. 4: Ego-Vehicle Behavior Manipulation: By extending Waymax, we can perform
safety-critical scenarios evaluation of autonomous system. We showcase that LidarDM
can produce realistic LiDAR for different simulated ego trajectories from 2 Waymax
sequences.
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Fig. 5: Actor Behavior Manipulation: To create challenging situation that consitute a
safety-critical scenario, we showcase that LidarDM can also produce realistic LiDAR
data for when the actor’s behavior is manipulated, as indicated in the purple boxes.

Underlying Mesh Corresponding Lidar

Fig. 6: Rare Scenario Simulation: The provided LidarDM approach is grounded in
physical simulation, suggesting that our generative method can be combined with stan-
dard physics-based ray casting simulation to simulate out-of-distribution rare cases,
such as a tiger crossing the street.
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